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Introduction to Singular Perturbation Problems (SPPs)

The birth of the SPPs was introduced by Prandtl at the Third
International Congress of Mathematicians in Heidelberg in 1904
and it was reported in the proceedings of the conference.
Many practical problems, such as the mathematical boundary
layer theory or approximation of solutions of various problems are
described by differential equations involving large or small
parameters.
The solutions of SPPs have non-uniform behavior. That is, there
are thin layer(s) (boundary layer region) where the solution varies
rapidly while away from the layer(s) (outer region) the solution
behaves regularly and varies slowly.
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Let Pε denote the original problem and uε be its solution.
Let P0 denote the reduced problem of Pε (setting ε = 0 in Pε) and u0
be its solution.
Then the problem Pε is called a Singular Perturbation Problem(SPP)
if and only if uε does not converge uniformly to u0 in the entire domain
of the definition of the problem. Otherwise the problem is called
Regular Perturbation Problem (RPP).

Example 1 (Regular Perturbation Problem)

Pε :

{
u′ε(x) = −εuε(x), x ∈ (0,1],

uε(0) = 1, 0 < ε� 1.

P0 : u′0(x) = 0, x ∈ (0,1],u0(0) = 1,
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Example 2 (Singular Perturbation Problem)

Pε :

{
εu′ε(x) = −uε(x), x ∈ (0,1],

uε(0) = 1, 0 < ε� 1.

P0 : u0(x) = 0, x ∈ [0,1],

The exact solution is given by

uε(x) = exp(−x/ε).

Note that,

lim
ε→0

lim
x→0

uε(x) = 1,

lim
x→0

lim
ε→0

uε(x) = 0.

That is, uε(x) does not converge uniformly to the reduced problem
solution on [0,1].
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Figure: Graph of the Solution for ε = 0.01

The solution changes very rapidly near the neighborhood of x = 0.
This neighborhood is called a boundary layer.
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Numerical Methods for SPPs

Often these mathematical problems are extremely difficult (or even
impossible) to solve exactly and in these circumstances approximate
solutions are necessary. One can obtain an approximate solution
through the use of perturbation methods.
In general, regular numerical methods like Euler method, Runge Kutta
methods, finite difference methods, etc cannot be applied to these SPPs.

For Example
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Numerical Solutio for N=50 and ε=0.01

Exact Solution for ε=0.01

Figure: Euler Method for Example (2)
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The disadvantage in the classical numerical methods (finite
difference/ finite element) is due to the nature of the coefficients.
That is, inaccurate solution due to perturbation parameter.
Classical numerical methods on equidistant grids yield
satisfactory numerical solution for singularly perturbed boundary
value problems only if one uses an unacceptably large number of
grid points.
In order to overcome this difficulty we apply numerical methods on
appropriate meshes like Shishkin mesh, Bakhvalov mesh,
Bakhvalov Shishkin mesh etc.

J. Christy Roja (Department of Mathematics) Numerical methods ... June 5, 2018 8 / 74



Introduction to Singularly Perturbed Turning Point Problems
(SPTPPs)

The main difference between singular perturbation problem and
singularly perturbed turning point problem is the coefficient of the
convection term vanishes inside the domain of the differential
equation.
If the turning point occur at the interior of the domain, then the
problem is called as an interior turning point problem, otherwise it
is a boundary turning point problem.
If the velocity distribution is linear, then the problem is known as a
simple turning point problem, otherwise it is a multiple turning
point problem.
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Mathematical model for a turning point problem

Consider the one dimensional equation [3] which describes a quantum
mechanical particle in a potential V (x)(

−ε2 d2

dx2 + V (x)− E
)

y(x) = 0,

where V (x) is the potential energy of the particle and
E is the total energy of the particle

For this equation , Q(x) = V (x)− E , so Q(x) vanishes at points
where V (x) = E and these are called turning points.
The classical orbit of a particle in the potential V (x) is confined to
the regions where V (x) ≤ E .
The particle moves until it reaches a point where V = E and then
it stops, turns around and moves of in the opposite direction.
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Applications

SPTPPs occur in the modelling of following problems.

Modeling of steady and unsteady viscous flow problems with large
Reynolds number

Navier Stokes flows with large Reynolds numbers

Magneto-hydrodynamic duct problems at high Hartman numbers

Heat transport problem with large Peclet numbers

One dimensional version of stationary convection-diffusion problems
with a dominant convective term

Speed field that changes its sign in the catch basin

Geophysics and modeling thermal boundary layers in laminar flow.
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A typical linear turning point problem in one dimension[12] is given by

Example 3

−εu
′′

(x) + xb(x)u
′
(x) + c(x)u(x) = f (x), x ∈ (−1,1), u(−1) = u(1) = 0

under the following assumptions:
(i) b(x) 6= 0 on [−1,1] (ii) c(x) ≥ 0, c(0) > 0.

The location of any boundary layer(s) depends on the sign of the
convection term.

From our experience, we expect a boundary layer at x = −1 if the
coefficient of the convection term xb(x) is negative at x = −1, and a
boundary layer at x = 1 if the same coefficient is positive at x = 1.

If b(x) is positive on [−1,1], we have xb(x)|x=−1 < 0 and xb(x)|x=1 > 0.

Consequently, if b is positive on [−1,1], then the solution u has two
boundary layers at x = 1 and x = −1 otherwise the solution has interior
layer at x = 0.
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Example 4 (Exhibiting layers at the boundary)

Consider the BVP

εu′′(x)− 2(2x − 1)u
′
(x)− 4u(x) = 0 ∀ x ∈ (0,1)

u(0) = 1, u(1) = 1

The exact solution is given by

u(x) = e−2x(1−x)/ε
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Figure: Exact solution of example 4 for ε = 2−2 to ε = 2−10 and N = 1024
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Example 5 (Exhibiting layers at the interior)

Consider the BVP

εu′′(x) + 2xu
′
(x) = 0 ∀ x ∈ (−1,1)

u(−1) = −1, u(1) = 1

The exact solution is given by

u(x) = erf (x/
√
ε)
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Figure: Exact solution of example 5 for ε = 2−2 to ε = 2−10 and N = 1024
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Numerical methods studied in the thesis

In the present thesis, motivated by the works of
[1, 4, 6, 9, 11, 16, 17, 19, 20, 21], two methods are given namely

Parameter Uniform Finite Difference
Method(PUFDM)
Variable Mesh Spline Approximation
Method(VMSAM)

for various singularly perturbed turning point problems.

The PUFDM and VMSAM are discussed for Problem class I,
where as the PUFDM is applied for Problem classes II to V.
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Problem class I: Second order SPTPPs with Robin boundary
conditions

Find u ∈ C1(Ω̄ = [−1,1]) ∩ C2(Ω = (−1,1)) such that

Lu ≡ εu′′(x) + a(x)u
′
(x)− b(x)u(x) = f (x), ∀ x ∈ Ω (1)

with Robin boundary conditions
B1u(−1) = β1u(−1)− εβ2u′(−1) = A (2)
B2u(1) = γ1u(1) + εγ2u

′
(1) = B

and the asssumptions
a(0) = 0, a

′
(0) < 0, |a(x)| ≤ α0 > 0,0 < β0 ≤ b(x),

α0 < β0, |a
′
(x)| ≥ |a

′
(0)|
2
∀x ∈ Ω̄, β1, β2 ≥ 0,

β1 − εβ2 > 0, γ2 ≥ 0 & γ1 > 0.

(3)

where ε(0 < ε� 1) is a small positive parameter, a(x),b(x) and f (x)
are sufficiently smooth functions on Ω̄.
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Theorem 6 (Minimum Principle)

Let L be the differential operator defined in (1) and v ∈ C1(Ω̄) ∩ C2(Ω).
If B1v(−1) ≥ 0, B2v(1) ≥ 0 and Lv ≤ 0 ∀ x ∈ Ω, then v(x) ≥ 0 ∀
x ∈ Ω̄.

Lemma 7 (Stability Result)

If u ∈ C0(Ω̄) ∩ C2(Ω), then

|u(x)| ≤ C max {max{|B1u|, |B2u|}, ||Lu||x∈Ω} , ∀x ∈ Ω̄.
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From now on we shall denote the subdomains of Ω̄ = [−1,1] as
Ω1 = [−1,−δ], Ω2 = [−δ, δ] and Ω3 = [δ, 1], 0 < δ ≤ 1/2. The choice of
δ = 1/2 can be found in [4].

Lemma 8

Let u be the solution of (1)-(3). Then

||u(k)|| ≤ Cε−(k) max{||f ||, ||u||}, k = 1,2
||u(3)|| ≤ Cε−(3) max{||f ||, ||f ′||, ||u||},

∀x ∈ Ω1 ∪ Ω3, where C depends on ||a||, ||a′||, ||b|| and ||b′||.
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The following lemma gives estimates for u and its derivatives in the
interval Ω2 which includes the turning point x = 0.

Lemma 9

Let u be the solution of (1)-(3). Then

||u(k)(x)|| ≤ C, ∀x ∈ Ω2,

where C depends on ||a||, ||a′ ||, ||b||, ||b′ ||, ||f ||, ||f ′ || and β.
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To derive ε - uniform error estimates we require sharper bounds of the
solution and its derivatives. For this we use Shishkin decomposition of the
solution u as

u = v + w .

Here v is the solution of the problem

Lv = f (4)

β1v(−1)− εβ2v
′
(−1) = β1v0(−1)− εβ2v

′

0(−1) + ε(β1v1(−1)− εβ2v
′

1(−1)),

γ1v(1) + εγ2v
′
(1) = γ1v0(1) + εγ2v

′

0(1) + ε(γ1v1(1) + εγ2v
′

1(1))

where v = v0 + εv1 + ε2v2.
Also v0 and v1 are defined respectively, to be the solutions of the reduced
problem:

av
′

0 − bv0 = f and av
′

1 − bv1 = −v
′′

0 (5)

and v2 is the solution of the problem similar to that defining u

Lv2 = −v
′′

1 , (6)

β1v2(−1)− εβ2v
′

2(−1) = 0, γ1v2(1) + εγ2v
′

2(1) = 0.
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The singular component w is the solution of the homogeneous problem

Lw = 0, (7)

β1w(−1)− εβ2w
′
(−1) = (β1u(−1)− εβ2u

′
(−1))− (β1v(−1)− εβ2v

′
(−1)),

γ1w(1) + εγ2w
′
(1) = (γ1u(1) + εγ2u

′
(1))− (γ1v(1) + εγ2v

′
(1)).

Lemma 10

The smooth component v and singular component w and their derivatives
satisfy the bounds for k=0,1,2,3

||v (k)(x)|| ≤ C(1 + ε2−k ), ∀ x ∈ Ω1 ∪ Ω3 and

|w (k)(x)| ≤
{

Cε−k e−α(1+x)/ε, ∀ x ∈ Ω1

Cε−k e−α(1−x)/ε, ∀ x ∈ Ω3

where |a(x)| ≥ α > 0, ∀x ∈ Ω1 ∪ Ω3.
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Theorem 11

The smooth component v and singular component w and their
derivatives satisfy the bounds for k=0,1,2,3

||v (k)(x)|| ≤ C(1 + ε2−k ), and
|w (k)(x)| ≤ Cε−k (e−α(1+x)/ε + e−α(1−x)/ε), ∀ x ∈ Ω̄.
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Finite Difference Scheme
The problem (1)-(2) is discretized using classical finite difference
scheme on piecewise uniform meshes (Shiskin mesh).
The domain Ω̄ is divide into three subintervals ΩL = [−1,−1 + τ ],
ΩC = [−1 + τ,1− τ ] and ΩR = [1− τ,1] such that
Ω̄ = ΩL ∪ ΩC ∪ ΩR.

The transition parameter τ is chosen to be min
{

1
2
,
2εlnN
α

}
.

The domain Ω̄N is obtained by putting a uniform mesh with N/4
mesh elements in both ΩL and ΩR and a uniform mesh with N/2
elements in ΩC .
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The resulting fitted finite difference scheme is to find U(xi) for
i = 0,1,2, · · ·N such that for xi ∈ Ω̄N ,

LNU(xi) := εδ2U(xi) + a(xi)D∗U(xi)− b(xi)U(xi), (8)
BN

1 U(x0) = β1U(x0)− εβ2D+U(x0)

BN
2 U(xN) = γ1U(xN) + εγ2D−U(xN), (9)

where D+U(xi) =
U(xi+1)− U(xi)

xi+1 − xi
, D−U(xi) =

U(xi)− U(xi−1)

xi − xi−1
,

δ2U(xi) =
D+U(xi)− D−U(xi)

(xi+1 − xi−1)/2
and

D∗U(xi) =

{
D+U(xi) if a(xi) > 0
D−U(xi) if a(xi) < 0

.
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Theorem 12 (Discrete minimum principle)

Let LN be the finite difference operator defined in (8)- (9) and let Ω̄N be
an arbitrary mesh of N + 1 mesh points. If ψ is any mesh function
defined on this mesh such that
BN

1 ψ(x0) ≥ 0, BN
2 ψ(xN) ≥ 0 and LNψ(xi) ≤ 0, for i = 1(1)N − 1 then

ψ(xi) ≥ 0, ∀ xi ∈ Ω̄N .

Lemma 13 (Discrete stability result)

Consider the scheme (8)- (9) to problem (1)-(3). If ψ(xi) is any mesh
function then, for all xi ∈ Ω̄N

|ψ(xi)| ≤ Cmax{|BN
1 ψ(x0)|, |BN

2 ψ(xN)|, max
1≤i≤N−1

|LNψ(xi)|}.
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Analogous to the continuous case, the discrete solution U can be
decomposed as

U = V + W ,

where V and W are respectively the solutions of the problems

LNV = f (xi), xi ∈ Ω̄N , (10)
β1V (−1)− εβ2D+V (−1) = β1v(−1)− εβ2v

′
(−1),

γ1V (1) + εγ2D−V (1) = γ1v(1) + εγ2v
′
(1)

and

LNW = 0, xi ∈ Ω̄N , (11)
β1W (−1)− εβ2D+W (−1) = β1w(−1)− εβ2w

′
(−1),

γ1W (1) + εγ2D−W (1) = γ1w(1) + εγ2w
′
(1).
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Lemma 14

The error in the smooth component of the numerical solution is bounded as

|(V − v)(xi )| ≤ CN−1, for all xi ∈ Ω̄N ,

where v is the solution of (4) and V is the solution of (10).

Lemma 15

The error in the singular component of the numerical solution is bounded as

|(W − w)(xi )| ≤ CN−1lnN,∀xi ∈ Ω̄N ,

where w is the solution of (7) and W is the solution of (11).

Theorem 16
If u is the solution of the problem (1)− (3) and U is the corresponding
numerical solution using the method outlined in (8)-(9), then we have

sup
0<ε≤1

||U − u||Ω̄N ≤ CN−1lnN ∀ N ≥ 4,

where the constant C is independent of ε and N.J. Christy Roja (Department of Mathematics) Numerical methods ... June 5, 2018 29 / 74



The following example is given to illustrate the numerical method. We
use the double mesh principle given as in [5] to estimate the error and
compute the experimental rate of convergence of the numerical
method.
Define the double mesh differences to be

DN
ε =

{
max
xi∈Ω̄N

|UN(xi)− U2N(xi)|
}
, and DN = max

ε
DN
ε

where UN(xi) and U2N(xi) respectively, denote the numerical solution
obtained using N and 2N mesh intervals. Further, we calculate the
Robust order of convergence as

pN = log2

(
DN

D2N

)
.
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The following example has a turning point at x = 1/2.

Example 17

εu
′′

(x)− 2(2x − 1)u
′
(x)− 4u(x) = 4(4x − 15), x ∈ (0,1)

u(0)− εu
′
(0) = 1, u(1) + εu

′
(1) = 1

Table: Values of DN , pN for the solution u for Example (17)

Number of mesh points N
64 128 256 512 1024

DN 9.2291e-1 5.6755e-1 3.7305e-1 2.2919e-1 1.3447e-1
pN 7.0144e-1 6.0539e-1 7.0282e-1 7.6921e-1 -
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Figure: Solution graph of Example 17 for various values of ε(eps) and
N = 64
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Variable mesh spline approximation method

Let the positive constants h̃ and K be known.
We construct a non uniform mesh on ΩL as follows:

h̃j = h̃j−1 + K

[
h̃j−1

ε

]
min(h̃2

j−1, ε), j = 2(1)N/4.

Let q̃ =

N/4∑
j=1

h̃j , q =
τ

q̃
, hj = qh̃j , j = 1(1)N/4

An uniform mesh on Ωc , is defined as

hj =
4(1− τ)

N
, j = N/4 + 1 (1) 3N/4.

As in ΩL, a nonuniform mesh is constructed on ΩR as
hj = hN+1−j , j = 3N/4 + 1(1)N
and define x0 = −1, xj = xj−1 + hj , j = 1(1)N.
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The cubic spline interpolating polynomial will have the following
properties:

(i) Sj(x) coincides with the polynomial of degree three on each
interval [xj−1, xj ], j = 1,2, · · · ,N

(ii) Sj(x) ∈ C2[0,1],
(iii) Sj(xj) = u(xj), j = 0(1)N.
Then we have the cubic spline functions,

Sj(x) =
(xj − x)3

6hj
Mj−1 +

(x − xj−1)3

6hj
Mj +

(
uj−1 −

h2
j Mj−1

6

)(
xj − x

hj

)
+(

uj −
h2

j Mj

6

)(
x − xj−1

hj

)
,

where, x ∈ [xj−1, xj ], hj = xj − xj−1, j = 1(1)N
and Mj = S

′′

j (xj), j = 0(1)N.

J. Christy Roja (Department of Mathematics) Numerical methods ... June 5, 2018 34 / 74



We obtain the difference scheme as

LNuj = Qfj , j = 1(1)N − 1. (12)

where, LNuj = r−j uj−1 + r c
j uj + r+

j uj+1, Qfj = q−j fj−1 + qc
j fj + q+

j fj+1

r−j =
2hj + hj+1

6(hj + hj+1)
aj−1 +

hj+1

3hj
aj −

h2
j+1

6hj (hj + hj+1)
aj+1 +

hj

6
bj−1 −

ε

hj
,

r+
j =

h2
j

6hj+1(hj + hj+1)
aj−1 −

hj

3hj+1
aj −

2hj+1 + hj

6(hj + hj+1)
aj+1 +

hj+1

6
bj+1 −

ε

hj+1
,

rc
j = −

hj + hj+1

6hj+1
aj−1 −

h2
j+1 − h2

j

3hj hj+1
aj +

hj+1 + hj

6hj
aj+1 +

hj+1 + hj

3
bj +

ε

hj
+

ε

hj+1
,

q−j = −
hj

6
, q+

j = −
hj+1

6
, qc

j = −
hj + hj+1

3
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We approximate the first derivative by centered finite difference
operator:
B1u(x0) ≡ β1u(x0)− εβ2D0u(x0) = A and
B2u(xN) ≡ γ1u(xN) + εγ2D0u(xN) = B
That is,

β1u0 −
εβ2

2h0
[u1 − u−1] = A (or) u−1 =

−2β1h0

εβ2
u0 + u1 +

2h0A
εβ2

(13)

and

γ1uN +
εγ2

2hN
[uN+1−uN−1] = B (or) uN+1 =

−2γ1hN

εγ2
uN + uN−1 +

2hNB
εγ2
(14)

where u(x−1) and u(xN+1) are the functional values at x−1 and xN+1.
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The nodes x−1 and xN+1 lie outside the interval [0,1] and are called
fictitious nodes. The values u(x−1) and u(xN+1) may be eliminated by
assuming that the difference equation (12) holds also for i = 0 and
i = N, that is at the boundary points x0 and xN . Substituting the values
of u−1 and uN+1 from (13) and (14) into the equations (12) for i = 0
and i = N, we get respectively,

BN
1 ≡

[
r c
0 −

2β1h0r−0
εβ2

]
u0 + [r+

0 + r−0 ]u1 = q−
0 f−1 + qc

0 f0 + q+
0 f1 −

2h0Ar−0
εβ2

(15)

and

BN
2 ≡

[
r c
N −

2γ1hN r+
N

εγ2

]
uN + [r−N + r+

N ]uN−1 = q−
N fN−1 + qc

N fN + q+
N

fN+1 −
2hNBr+

N
εγ2

. (16)
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Theorem 18
Let {uj}, j = 0(1)N, be a set of values of the approximate solution to
u(x) of (1)-(3), obtained by using (12), (15) and (16). Then there are
positive constants C and α (independent of h and ε) such that the
following estimate holds:

max
j
|uj − u(xj)| ≤ Ch2

c

[
exp

{
−α(1 + xj)

ε

}
+ exp

{
−α(1− xj)

ε

}]
where hc = max

j
hj = a constant .

Table: Values of DN , pN for the solution components u for the above Example
(17)

Number of mesh points N
64 128 256 512 1024

DN 1.4089 3.0437e-1 7.3039e-2 1.7835e-2 5.2069e-3
pN 2.2107 2.0591 2.0339 1.7762 -
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Problem class II: Weakly coupled system of second order SPTPPs

Find u1,u2 ∈ Y = C0(Ω̄) ∩ C2(Ω) such that

L̄ū(x) =


L1ū(x) = εu

′′

1 (x) + a1(x)u
′

1(x) + b11(x)u1(x)

+b12(x)u2(x) = f1(x), x ∈ Ω,

L2ū(x) = εu
′′

2 (x) + a2(x)u
′

2(x) + b21(x)u1(x)

+b22(x)u2(x) = f2(x), x ∈ Ω,

(17)

u1(−1) = l1, u2(−1) = l2, u1(1) = l3, u2(1) = l4 (18)
b12 ≥ 0, b21 ≥ 0, b11 + b12 ≤ 0, b22 + b21 ≤ 0
|ak (x)| ≤ αk > 0, for 0 < |x | ≤ 1, ak (0) = 0, a

′

k (0) < 0,
and |a′k (x)| ≥ |a′k (0)|/2 ∀x ∈ Ω̄, for k = 1,2

(19)

where the functions a1(x),a2(x),b11(x),b12(x),b21(x),b22(x), f1(x)
and f2(x) are sufficiently smooth on Ω̄.
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Finite difference scheme for the problem (17)-(18)

The fitted finite difference scheme is to find Ū(xi) = (U1(xi),U2(xi))T

for i = 0,1,2, · · ·N such that for xi ∈ Ω̄N ,

LN
1 Ū(xi) := εδ2U1(xi) + a1(xi)D∗U1(xi) + b11(xi)U1(xi) (20)

+b12(xi)U2(xi) = f1(xi) i = 1(1)N − 1,
LN

2 Ū(xi) := εδ2U2(xi) + a2(xi)D∗U2(xi) + b21(xi)U1(xi) (21)
+b22(xi)U2(xi) = f2(xi), i = 1(1)N − 1,
U1(x0) = u1(−1),U1(xN) = u1(1),

U2(x0) = u2(−1),U2(xN) = u2(1).

where D+Uj(xi) =
Uj(xi+1)− Uj(xi)

xi+1 − xi
, D−Uj(xi) =

Uj(xi)− Uj(xi−1)

xi − xi−1
,

δ2Uj(xi) =
D+Uj(xi)− D−Uj(xi)

(xi+1 − xi−1)/2
and

D∗Uj(xi) =

{
D+Uj(xi) if aj(xi) > 0
D−Uj(xi) if aj(xi) < 0

.
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Theorem 19

Let ū(x) = (u1(x),u2(x))T , for all x ∈ Ω̄ be the solution of (17)-(19)and
let Ū(xi) = (U1(xi),U2(xi))T , for all xi ∈ Ω̄N be the numerical solution
of problem (20)-(21). Then we have

sup
0<ε≤1

||U1−u1||Ω̄N
ε
≤ CN−1(lnN)2 and sup

0<ε≤1
||U2−u2||Ω̄N ≤ CN−1(lnN)2.
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Example 20

Consider the following system of singularly perturbed turning point
problem

εu
′′

1 (x)− 2(2x − 1)u
′

1(x)− 9u
′

1(x) + 2u2(x) = 0, x ∈ (0,1)

εu
′′

2 (x)− 4(2x − 1)u
′

2(x)− 6u
′

2(x) + u1(x) = 0, x ∈ (0,1)

u1(0) = 1, u2(0) = 1, u1(1) = 1, u2(1) = 1.
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Table: Values of DN
1 , pN

1 and DN
2 , pN

2 for the solution components U1 and U2
respectively for Example 20

Number of mesh points N
64 128 256 512 1024

DN
1 2.3351e-2 1.4544e-2 8.9904e-3 5.2098e-3 2.9596e-3

pN
1 6.8307e-1 6.9394e-1 7.8715e-1 8.1584e-1 -

DN
2 8.0236e-2 4.1792e-2 2.1304e-2 1.1884e-2 6.1696e-3

pN
2 9.4103e-1 9.7207e-1 8.4213e-1 9.4575e-1 -
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Figure: Solution graph of Example 20 for ε = 2−4 and N = 27
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Figure: Maximum pointwise errors as a function of N and ε for the solution U1
and U2 for Example 20
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Problem class III: Weakly coupled system of second order SPTPPs
with Robin boundary conditions

Find ū = (u1,u2)T ∈ Y = C1(Ω̄) ∩ C2(Ω) such that

L̄ū(x) =


L1ū(x) = εu

′′

1 (x) + a1(x)u
′

1(x) + b11(x)u1(x)

+b12(x)u2(x) = f1(x), x ∈ Ω,

L2ū(x) = εu
′′

2 (x) + a2(x)u
′

2(x) + b21(x)u1(x)

+b22(x)u2(x) = f2(x), x ∈ Ω,

(22)

with the boundary conditions
B10u1(−1) ≡ β10u1(−1)− εβ11u

′

1(−1) = A1,

B11u1(1) ≡ γ11u1(1) + εγ12u
′

1(1) = B1,

B20u2(−1) ≡ β20u2(−1)− εβ21u
′

2(−1) = A2,

B21u2(1) ≡ γ21u2(1) + εγ22u
′

2(1) = B2,

(23)
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and the assumptions
b12 ≥ 0, b21 ≥ 0, b11 + b12 ≤ b1 < 0, b22 + b21 ≤ b2 < 0
|ak (x)| ≤ αk > 0, for 0 < |x | ≤ 1, ak (0) = 0, a

′

k (0) < 0,
αk + bk < 0 and |a′k (x)| ≥ |a′k (0)|/2 ∀x ∈ Ω̄, for k = 1,2
βj0, βj1 ≥ 0, βj0 − εβj1 ≥ 0, γj1, γj2 ≥ 0, j = 1,2.

(24)

where the functions a1(x),a2(x),b11(x),b12(x),b21(x),b22(x),
f1(x) and f2(x) are sufficiently smooth on Ω̄,
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Finite difference scheme for the problem (22)-(23)

The fitted finite difference scheme is to find Ū(xi) = (U1(xi),U2(xi))T

for i = 0,1,2, · · ·N such that for xi ∈ Ω̄N ,

L̄NŪ(xi) =


LN

1 Ū(xi) := εδ2U1(xi) + a1(xi)D∗U1(xi) + b11(xi)U1(xi)

+b12(xi)U2(xi) = f1(xi), i = 1(1)N − 1,
LN

2 Ū(xi) := εδ2U2(xi) + a2(xi)D∗U2(xi) + b21(xi)U1(xi)

+b22(xi)U2(xi) = f2(xi), i = 1(1)N − 1,

(25)


BN

10U1(x0) ≡ β10U1(x0)− εβ11D+U1(x0) = A1,

BN
11U1(xN) ≡ γ11U1(xN) + εγ12D−U1(xN) = B1,

BN
20U2(x0) ≡ β20U2(x0)− εβ21D+U2(x0) = A2,

BN
21U2(xN) ≡ γ21U2(xN) + εγ22D−U2(xN) = B2,

(26)
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Theorem 21

Let ū(x) = (u1(x),u2(x))T , for all x ∈ Ω̄ be the solution of (22)-(24)and
let Ū(xi) = (U1(xi),U2(xi))T , for all xi ∈ Ω̄N be the numerical solution
of problem (25)-(26). Then we have

sup
0<ε≤1

||U1 − u1||Ω̄N
ε
≤ CN−1lnN and sup

0<ε≤1
||U2 − u2||Ω̄N ≤ CN−1lnN.
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Example 22

Consider the following system of singularly perturbed turning point
problem

εu
′′

1 (x)− 7(2x − 1)u
′

1(x)− 10u1(x) + 2u2(x) = −ex , x ∈ (0,1)

εu
′′

2 (x)− 3(2x − 1)u
′

2(x)− 7u2(x) + 3u1(x) = x + 5, x ∈ (0,1)

u1(0)− εu′1(0) = 2, u2(0)− εu′2(0) = 2,

u1(1) + εu
′

1(1) = 2, u2(1) + εu
′

2(1) = 2.
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Table: Values of DN
1 , pN

1 and DN
2 , pN

2 for the solution components U1 and U2
respectively for Example 22

Number of mesh points N
64 128 256 512 1024

DN
1 5.3386e-2 3.3316e-2 2.0917e-2 1.2528e-2 6.3892e-3

pN
1 6.8027e-1 6.7153e-1 7.3946e-1 9.7149e-1 -

DN
2 5.7580e-2 3.4862e-2 2.0375e-2 1.1785e-2 6.5330e-3

pN
2 7.2390e-1 7.7486e-1 7.8991e-1 8.5108e-1 -
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Figure: Solution graph of Example 22 for ε = 2−4 and N = 27
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Figure: Maximum pointwise errors as a function of N and ε for the solution u1
and u2 for Example 22
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Problem class IV: Third order SPTPPs

Find u ∈ C1(Ω̄) ∩ C3(Ω) such that{
Lu = εu

′′′
(x) + a(x)u

′′
(x)− b(x)u

′
(x) + c(x)u(x) = f (x), x ∈ Ω,

u(−1) = l1, u
′
(−1) = l2, u

′
(1) = l3,

(27)


|a(x)| ≤ α > 0, for 0 < |x | ≤ 1, a(0) = 0, a

′
(0) < 0,

β0 ≥ b(x) ≥ β0 > 0, γ0 ≥ c(x) ≥ γ0 > 0, α < β0 − γ0,

and |a′(x)| ≥ |a′(0)|/2 ∀x ∈ Ω̄,

(28)

where a(x),b(x), c(x) and f (x) are smooth functions on Ω̄.
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The above problem is equivalent to the following problem:

Find ū = (u1,u2)T , u1,u2 ∈ C0(Ω̄) ∩ C2(Ω) such that

L̄ū =


L1ū := u2(x)− u

′

1(x) = 0, x ∈ Ω,

L2ū := εu
′′

2 (x) + a(x)u′2(x)− b(x)u2(x)

+c(x)u1(x) = f (x), x ∈ Ω,

(29)

u1(−1) = l1, u2(−1) = l2, u2(1) = l3. (30)
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Finite difference scheme for the problem (29)-(30)

The fitted finite difference scheme is to find Ū(xi) = (U1(xi),U2(xi))T

for i = 0,1,2, · · ·N such that for xi ∈ Ω̄N ,

LN
1 Ū(xi) := U2(xi)− D−U1(xi) = 0, i = 1(1)N,

LN
2 Ū(xi) := εδ2U2(xi) + a(xi)D∗U2(xi)− b(xi)U2(xi) (31)

+c(xi)U1(xi) = f (xi), i = 1(1)N − 1,
U1(x0) = u1(x0), U2(x0) = u2(x0), U2(xN) = u2(xN).

where D+Uj(xi) =
Uj(xi+1)− Uj(xi)

xi+1 − xi
, D−Uj(xi) =

Uj(xi)− Uj(xi−1)

xi − xi−1
,

δ2Uj(xi) =
D+Uj(xi)− D−Uj(xi)

(xi+1 − xi−1)/2
and

D∗Uj(xi) =

{
D+Uj(xi) if a(xi) > 0
D−Uj(xi) if a(xi) < 0

.
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Theorem 23

Let ū(x) = (u1(x),u2(x))T , for all x ∈ Ω̄ be the solution of (29)-(30)and
let Ū(xi) = (U1(xi),U2(xi))T , for all xi ∈ Ω̄N

ε be the numerical solution
of problem (31). Then we have

sup
0<ε≤1

||U1 − u1||Ω̄N
ε
≤ CN−1lnN and sup

0<ε≤1
||U2 − u2||Ω̄N

ε
≤ CN−1lnN.
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Example 24

Consider the following singularly perturbed turning point problem

εu
′′′

(x)− 5xu
′′

(x)− (x + 4)u
′
(x) + (2 + x)u(x) = −ex , x ∈ (−1,1)

u(−1) = 1, u
′
(−1) = 1, u

′
(1) = 1.

Table: Values of DN
1 , pN

1 and DN
2 , pN

2 for the solution components U1 and U2
respectively for Example 24

Number of mesh points N
64 128 256 512 1024

DN
1 2.7087e-2 1.5076e-2 8.0262e-3 4.0350e-3 2.0241e-3

pN
1 8.4539e-1 9.0943e-1 9.9214e-1 9.9530e-1 -

DN
2 6.7643e-2 4.5055e-2 2.5059e-2 1.2807e-2 7.7298e-3

pN
2 5.8625e-1 8.4638e-1 9.6833e-1 7.2848e-1 -
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Figure: Solution graph of Example 24 for ε = 2−4 and N = 27
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Figure: Maximum pointwise errors as a function of N and ε for the solution u1
and u2 for Example 24
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Problem class V: Fourth order SPTPPs

Find u ∈ C2(Ω̄) ∩ C4(Ω) such that
Lu = −εuiv (x)− a(x)u

′′′
(x) + b(x)u

′′
(x)

+c(x)u(x) = f (x), x ∈ Ω,

u(−1) = l1, u(1) = l2, u
′′

(−1) = l3, u
′′

(1) = l4,
(32)

with the assumptions
|a(x)| ≤ α > 0, for 0 < |x | ≤ 1, a(0) = 0,
a
′
(0) < 0, β0 ≥ b(x) ≥ β0 > 0, γ0 ≥ c(x) ≥ γ0 > 0,

α < β0 − γ0, and |a′(x)| ≥ |a′(0)|/2 ∀x ∈ Ω̄,

(33)

where a(x),b(x), c(x) and f (x) are smooth functions on Ω̄.
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The above problem is equivalent to the following problem:

Find ū = (u1,u2)T , u1,u2 ∈ C0(Ω̄) ∩ C2(Ω) such that

L̄ū =


L1ū := u

′′

1 (x) + u2(x) = 0, x ∈ Ω,

L2ū := εu
′′

2 (x) + a(x)u′2(x)− b(x)u2(x)

+c(x)u1(x) = f (x), x ∈ Ω,

(34)

u1(−1) = l1, u1(1) = l2, u2(−1) = l3, u2(1) = l4. (35)
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Finite difference scheme for the problem (34)-(35)

The fitted finite difference scheme is to find Ū(xi) = (U1(xi),U2(xi))T

for i = 0,1,2, · · ·N such that for xi ∈ Ω̄N
ε , is L̄N = (LN

1 ,L
N
2 ) where

LN
1 Ū(xi) := δ2U1(xi) + U2(xi) = 0, i = 1(1)N − 1,

LN
2 Ū(xi) := εδ2U2(xi) + a(xi)D∗U2(xi)− b(xi)U2(xi) (36)

+c(xi)U1(xi) = f (xi), i = 1(1)N − 1,
U1(x0) = u1(x0), U1(xN) = u1(xN),

U2(x0) = u2(x0), U2(xN) = u2(xN),

where D+Uj(xi) =
Uj(xi+1)− Uj(xi)

xi+1 − xi
, D−Uj(xi) =

Uj(xi)− Uj(xi−1)

xi − xi−1
,

δ2Uj(xi) =
D+Uj(xi)− D−Uj(xi)

(xi+1 − xi−1)/2
and

D∗Uj(xi) =

{
D+Uj(xi) if a(xi) > 0
D−Uj(xi) if a(xi) < 0

.
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Theorem 25

Let ū(x) = (u1(x),u2(x))T , for all x ∈ Ω̄ be the solution of (34)-(35)and
let Ū(xi) = (U1(xi),U2(xi))T , for all xi ∈ Ω̄N be the numerical solution
of problem (36). Then we have

sup
0<ε≤1

||U1 − u1||Ω̄N
ε
≤ CN−1lnN and sup

0<ε≤1
||U2 − u2||Ω̄N ≤ CN−1lnN
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Example 26

Consider the following singularly perturbed turning point problem

−εuiv (x)+5xu
′′′

(x)+(4+x)u
′′

(x)+(2+x)u(x) = −exp(x), x ∈ (−1,1)

u(−1) = 1,u(1) = 1,u
′′

(−1) = 1, u
′′

(1) = 1.
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Table: Values of DN
1 , pN

1 and DN
2 , pN

2 for the solution components U1 and U2
respectively for Example 26

Number of mesh points N
64 128 256 512 1024

DN
1 3.9254e-2 1.9943e-2 1.0050e-2 5.0450e-3 2.5274e-3

pN
1 9.7697e-1 9.8861e-1 9.9433e-1 9.9717e-1 -

DN
2 3.5852e-2 2.5491e-2 1.4071e-2 8.0757e-3 4.5981e-3

pN
2 4.9207e-1 8.5727e-1 8.0104e-1 8.1256e-1 -

J. Christy Roja (Department of Mathematics) Numerical methods ... June 5, 2018 66 / 74



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

x

u

 

 

u
1

u
2

Figure: Solution graph of Example 26 for ε = 2−4 and N = 27
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Figure: Maximum pointwise errors as a function of N and ε for the solution u1
and u2 for Example 26
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Conclusion and Scope

Conclusion and Scope

Finite Difference method and Variable mesh spline approximation
method are applied for problem class I. Finite Difference method is
used solve the remaining problems.
One can apply these method for other class of problems like
multiple turning point problems, turning point problem with interior
layers, two parameter turning point problems, turning point
problem with discontinuous source term, etc.
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Thank You

J. Christy Roja (Department of Mathematics) Numerical methods ... June 5, 2018 74 / 74


	Introduction
	Mathematical model for a turning point problem
	Applications
	Problems studied in the thesis
	References

